DBMS A database management system is the software system that allows users to define, create and maintain a database and provides controlled access to the data.
A Database Management System (DBMS) is basically a collection of programs that enables users to store, modify, and extract information from a database as per the requirements. DBMS is an intermediate layer between programs and the data. Programs access the DBMS, which then accesses the data. There are different types of DBMS ranging from small systems that run on personal computers to huge systems that run on mainframes. The following are main examples of database applications:
• Computerized library systems
• Automated teller machines
• Flight reservation systems
• Computerized parts inventory systems
A database management system is a piece of software that provides services for accessing a database, while maintaining all the required features of the data. Commercially available Database management systems in the market are dbase, FoxPro, IMS and Oracle, MySQL, SQL Servers and DB2 etc.
These systems allow users to create update, and extract information from their databases.
Compared to a manual filing system, the biggest advantages to a computerized database system are speed, accuracy, and' accessibility.
Components of the Database System Environment
There are five major components in the database system environment and their interrelationship are.
• Hardware
• Software
• Data
• Users
• Procedures
1.Hardware: The hardware is the actual computer system used for keeping and accessing the database. Conventional DBMS hardware consists of secondary storage devices, usually hard disks, on which the database physically resides, together with the associated Input-Output devices, device controllers and· so forth. Databases run on a' range of machines, from Microcomputers to large mainframes. Other hardware issues for a DBMS includes database machines, which is hardware designed specifically to support a database system.
2. Software: The software is the actual DBMS. Between the physical database itself (i.e. the data as actually stored) and the users of the system is a layer of software, usually called the Database Management System or DBMS. All requests from users for access to the database are handled by the DBMS. One general function provided by the DBMS is thus the shielding of database users from complex hardware-level detail.
The DBMS allows the users to communicate with the database. In a sense, it is the mediator between the database and the users. The DBMS controls the access and helps to maintain the consistency of the data. Utilities are usually included as part of the DBMS. Some of the most common utilities are report writers and application development.
3. Data : It is the most important component of DBMS environment from the end users point of view. As shown in observes that data acts as a bridge between the machine components and the user components. The database contains the operational data and the meta-data, the 'data about data'.
The database should contain all the data needed by the organization. One of the major features of databases is that the actual data are separated from the programs that use the data. A database should always be designed, built and populated for a particular audience and for a specific purpose.
4. Users : There are a number of users who can access or retrieve data on demand using the applications and interfaces provided by the DBMS. Each type of user needs different software capabilities. The users of a database system can be classified in the following groups, depending on their degrees of expertise or the mode of their interactions with the DBMS. The users can be:
• Naive Users
• Online Users
• Application Programmers
• Sophisticated Users
• Data Base Administrator (DBA)
Naive Users: Naive Users are those users who need not be aware of the presence of the database system or any other system supporting their usage. Naive users are end users of the database who work through a menu driven application program, where the type and range of response is always indicated to the user.
A user of an Automatic Teller Machine (ATM) falls in this category. The user is instructed through each step of a transaction. He or she then responds by pressing a coded key or entering a numeric value. The operations that can be performed by valve users are very limited and affect only a precise portion of the database. For example, in the case of the user of the Automatic Teller Machine, user's action affects only one or more of his/her own accounts.
Online Users : Online users are those who may communicate with the database directly via an online terminal or indirectly via a user interface and application program. These users are aware of the presence of the database system and may have acquired a certain amount of expertise with in the limited interaction permitted with a database.
Sophisticated Users : Such users interact with the system without ,writing programs.
Instead, they form their requests in database query language. Each such query is submitted to a very processor whose function is to breakdown DML statement into instructions that the storage manager understands.
Specialized Users : Such users are those ,who write specialized database application that do not fit into the fractional data-processing framework. For example: Computer-aided design systems, knowledge base and expert system, systems that store data with complex data types (for example, graphics data and audio data).
Application Programmers : Professional programmers are those who are responsible for developing application programs or user interface. The application programs could be written using general purpose programming language or the commands available to manipulate a database.
Database Administrator: The database administrator (DBA) is the person or group in charge for implementing the database system ,within an organization. The "DBA has all the system privileges allowed by the DBMS and can assign (grant) and remove (revoke) levels of access (privileges) to and from other users. DBA is also responsible for the evaluation, selection and implementation of DBMS package.
5. Procedures: Procedures refer to the instructions and rules that govern the design and use of the database. The users of the system and the staff that manage the database require documented procedures on how to use or run the system.
Advantages of DBMS
The database management system has promising potential advantages, which are explained below:
1. Controlling Redundancy: In file system, each application has its own private files, which cannot be shared between multiple applications. 1:his can often lead to considerable redundancy in the stored data, which results in wastage of storage space. By having centralized database most of this can be avoided. It is not possible that all redundancy should be eliminated. Sometimes there are sound business and technical reasons for· maintaining multiple copies of the same data. In a database system, however this redundancy can be controlled.
2. Integrity can be enforced: Integrity of data means that data in database is always accurate, such that incorrect information cannot be stored in database. In order to maintain the integrity of data, some integrity constraints are enforced on the database. A DBMS should provide capabilities for defining and enforcing the constraints.
For Example: Let us consider the case of college database and suppose that college having only BTech, MTech, MSc, BCA, BBA and BCOM classes. But if a \.,ser enters the class MCA, then this incorrect information must not be stored in database and must be prompted that this is an invalid data entry. In order to enforce this, the integrity constraint must be applied to the class attribute of the student entity. But, in case of file system tins constraint must be enforced on all the application separately (because all applications have a class field).
3. Inconsistency can be avoided : When the same data is duplicated and changes are made at one site, which is not propagated to the other site, it gives rise to inconsistency and the two entries regarding the same data will not agree. At such times the data is said to be inconsistent. So, if the redundancy is removed chances of having inconsistent data is also removed.
4. Data can be shared: As explained earlier, the data about Name, Class, Father __name etc. of General_Office is shared by multiple applications in centralized DBMS as compared to file system so now applications can be developed to operate against the same stored data. The applications may be developed without having to create any new stored files.
5. Standards can be enforced : Since DBMS is a central system, so standard can be enforced easily may be at Company level, Department level, National level or International level. The standardized data is very helpful during migration or interchanging of data. The file system is an independent system so standard cannot be easily enforced on multiple independent applications.
6. Restricting unauthorized access: When multiple users share a database, it is likely that some users will not be authorized to access all information in the database. For example, account office data is often considered confidential, and hence only authorized persons are allowed to access such data. In addition, some users may be permitted only to retrieve data, whereas other are allowed both to retrieve and to update. Hence, the type of access operation retrieval or update must also be controlled. Typically, users or user groups are given account numbers protected by passwords, which they can use to gain access to the database. A DBMS should provide a security and authorization subsystem, which the DBA uses to create accounts and to specify account restrictions. The DBMS should then enforce these restrictions automatically.
7. Solving Enterprise Requirement than Individual Requirement: Since many types of users with varying level of technical knowledge use a database, a DBMS should provide a variety of user interface. The overall requirements of the enterprise are more important than the individual user requirements. So, the DBA can structure the database system to provide an overall service that is "best for the enterprise".
For example: A representation can be chosen for the data in storage that gives fast access for the most important application at the cost of poor performance in some other application. But, the file system favors the individual requirements than the enterprise requirements
8. Providing Backup and Recovery: A DBMS must provide facilities for recovering from hardware or software failures. The backup and recovery subsystem of the DBMS is responsible for recovery. For example, if the computer system fails in the middle of a complex update program, the recovery subsystem is responsible for making sure that the .database is restored to the state it was in before the program started executing.
9. Cost of developing and maintaining system is lower: It is much easier to respond to unanticipated requests when data is centralized in a database than when it is stored in a conventional file system. Although the initial cost of setting up of a database can be large, but the cost of developing and maintaining application programs to be far lower than for similar service using conventional systems. The productivity of programmers can be higher in using non-procedural languages that have been developed with DBMS than using procedural languages.
10. Data Model can be developed : The centralized system is able to represent the complex data and interfile relationships, which results better data modeling properties. The data madding properties of relational model is based on Entity and their Relationship, which is discussed in detail in chapter 4 of the book.
11. Concurrency Control : DBMS systems provide mechanisms to provide concurrent access of data to multiple users.
Disadvantages of DBMS
The disadvantages of the database approach are summarized as follows:
1. Complexity : The provision of the functionality that is expected of a good DBMS makes the DBMS an extremely complex piece of software. Database designers, developers, database administrators and end-users must understand this functionality to take full advantage of it. Failure to understand the system can lead to bad design decisions, which can have serious consequences for an organization.
2. Size : The complexity and breadth of functionality makes the DBMS an extremely large piece of software, occupying many megabytes of disk space and requiring substantial amounts of memory to run efficiently.
3. Performance: Typically, a File Based system is written for a specific application, such as invoicing. As result, performance is generally very good. However, the DBMS is written to be more general, to cater for many applications rather than just one. The effect is that some applications may not run as fast as they used to.
4. Higher impact of a failure: The centralization of resources increases the vulnerability of the system. Since all users and applications rely on the ~vailabi1ity of the DBMS, the failure of any component can bring operations to a halt.
5. Cost of DBMS: The cost of DBMS varies significantly, depending on the environment and functionality provided. There is also the recurrent annual maintenance cost.
6. Additional Hardware costs: The disk storage requirements for the DBMS and the database may necessitate the purchase of additional storage space. Furthermore, to achieve the required performance it may be necessary to purchase a larger machine, perhaps even a machine dedicated to running the DBMS. The procurement of additional hardware results in further expenditure.
7. Cost of Conversion: In some situations, the cost oftlle DBMS and extra hardware may be insignificant compared with the cost of converting existing applications to run on the new DBMS and hardware. This cost also includes the cost of training staff to use these new systems and possibly the employment of specialist staff to help with conversion and running of the system. This cost is one of the main reasons why some organizations feel tied to their current systems and cannot switch to modern database technology.